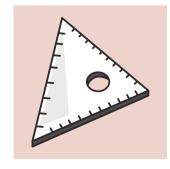

JAPAN MECHANICAL DESIGN INDUSTRIES ASSOCIATION NEWS



■ 機械設計技術者試験

no.144 2025

KURODA

限りなく 誤差ゼロに近い精度を求めて

ものづくりの原点、それは精密に数値を測定することです。

1925年にゲージメーカーとしてスタートした KURODAは、創業以来変わらずに「精密」へ こだわり続けてきました。

そして、そのこだわりは時代を象徴する様々な 機器に活かされています。

「限りなく誤差ゼロに近い精度」を実現し、 あらゆる産業が求める高精度、高生産性に 応えることこそが、KURODAの製品づくりの 原点なのです。

ボールねじ・精密金型・要素機器・平面研削盤・精密測定装置・ゲージ

黑田精工株式会社

本 社 〒212-8560 川崎市幸区堀川町580-16 川崎テックセンター

URL http://www.kuroda-precision.co.jp

JAPAN MECHANICAL DESIGN INDUSTRIES ASSOCIATION NEWS

no.**144**2025

- 1. KISETU 目次
- 支部だより 関東支部 関西支部 中四国支部 中部支部
- 9. PRのページ 会員募集中PRのページ 会員募集中(JMC)
- 10. **遠州の突風にふれて** - 令和7年 JMC定時総会 研修レポート JMC定時総会 研修レポートー
- 13. KJ会 インドネシア視察旅行報告
- 16. 今和7年度 機械設計技術者試験のご案内
- 23. 事務局よりお知らせ

「機 設」 -般社団法人日本機械設計工業会 会誌

令和7年10月25日発行 通巻144号 定価 1部 1,000円(送・税別)

定圖 I 即 1,000 1 ()

編 集 「機 設」編集委員会

卷 行 一般社団法人 日本機械設計工業会 〒104-0033 東京都中央区新川2-6-4

TEL03-6222-9310 FAX03-6222-9315

発 行 人 齋田 善弘

編集制作 ダイワ企画(株)

〒101-0063 東京都千代田区神田淡路町2-10 TEL03-3254-9231(代) FAX03-3254-9234

第37回ものづくりワールド東京

令和7年7月9日(水)から11日(金)までの3日間、「第37回ものづくりワールド東京」(主催:RX Japan 株式会社)が幕張メッセ(千葉県美浜区)で開催された。これまで東京ビッグサイトで6月に開催されていたが、施設の大規模改修工事の影響を受けて、今年は幕張メッセに開催場所を移して7月の開催となった。今年の出展社数は約1,800社で、来場者数は55,749名であり、昨年と比べて出展社数は約170社、来場者数は約14,000人の減少となった。会場が都心から離れたことや、7月の猛暑の影響もあったのではないかと推測される。但し、最終日は例年と同様な熱気に溢れる感じで、多くの来場者となった。

今年の「ものづくりワールド東京」には、工業会会員企業から昨年に引き続き3社の出展があったので、写真とともに一部をご紹介してみたい。また、今回は主催者協力団体として工業会紹介スペースを準備いただき、団体 PR の場として活用した。

●㈱アビリカ (関東支部会員)

「未来価値を創発する Future Value Possibilian」という理念のもと、生産設備、検査装置、プラント設備、自動車、半導体、医療機器、昇降機など幅広い領域へ設計・開発技術を提供する、設計・開発・エンジニアリング企業である。例年、単独でブースを構えて出展しているが、今年はコラボレーション企画として、「iCAD」と「ミスミ」の展示エリアの間にアビリカで開発した、「スクエア包み」という特殊な化粧折りにより箱を完全自動で包装する「自動箱包み装置」を展示している。「iCAD」と「ミスミ」はもともと、「iCAD」の「iCAD SX」と「ミスミ」の機械部品調達の AI プラットフォーム「meviy(メビー)」を連携させており、今回の展示装置は、両社のシステムを使って開発設計・部品調達していることから、本企画となっている。また、この「自動箱包み装置」は、日本設計工学会から「武藤栄治賞優秀設計賞」を受賞している。

▲アビリカブース

▲アビリカ PR 大使

●工業会紹介スペース

今回の展示会では、広大な会場の中に主催者協力 企業や団体の紹介スペースが設けられた。わたし たち工業会も主催者協力団体としてその一角が提 供され、そこで齋田新会長のもと制作した団体紹 介パンフレット、および機械設計技術者試験リー フレットを配布した。試験制度や工業会を知らな い来場者へ周知を進めることができた。

▲工業会ブース

●竹田設計工業㈱ (中部支部会員)

今年で創業 49 年を迎える、航空・宇宙、自動車、一般産業機械など多種多様な分野において、モノづくりの原点である企画・構想、設計、解析から、試作品・設備の製作まで対応する、総合エンジニアリング企業である。人材育成にも力を入れており、研究施設(テクニカルセンター)を活用し、あらたな技術の習得と独自の研修システムを構築している。

今年の展示コンセプトは、展示装置の説明をさることながら、より多くの方に会社を知ってもらおうと、設計の上流から解析・製作と多くのプロセスをワンストップでのサービス提供を知って頂くこととしており、創業 50 年を目前とし、次の成長を目指す思いをデザインしたポロシャツを着た説明員が、熱心に展示装置や会社説明をしていた。

▲竹田設計工業ブース

▲ 50 周年ポロシャツ

●㈱中央エンジニアリング(関東支部会員)

「ブレインパートナー」をコンセプトに、航空、宇宙、自動車、産業機械、情報通信分野に展開している。

今年の展示ブースには、新たなコーポレートマークが表示されている。社名の文字の「中」とギリシャ文字の「 ϕ 」を合わせたデザインで、「 ϕ 」は数学から工学・物理学と幅広くつかわれ、非常になじみがある親しみやすいコーポレートマークとなっている。また、展示で特に目を引いたのは、月面探査車「YAOKI」への参画である。YAOKI は、日本の民間企業が開発した月面探査車で、今年 3 月に民間初の月面軟着陸を達成したアメリカ企業の月面着陸船に搭載された。YAOKI の開発へおいて、得意な熱解析で参画しており、宇宙空間における過酷な温度条件から、月面探査車を守ることが出来た。トラブルにより、実際に YAOKI が駆動している姿は撮影出来ていないが、データから稼働した事が実証できており、更なる開発に期待される。

▲中央エンジニアリングブース

『令和7年度技術者試験講習会』を終えて _____

小生が関西支部事務局に入局して今年で3年目となり、同時に講習会の申込受付業務を担当して、3度目となりました。受講者数は令和5年度が37名、令和6年度は17名と減りましたが、今年度は36名と又、増えました。

最初は、申込受付業務の要領がよく判らず、四苦八苦したものですが、2度目・3度目と行っていく内に要領も得て、スムーズに運ぶ様になりました。そういった縁もあって、実際講習会がどの様に行われているのか、今回初めて講習会を見学しました。

講習会は大阪市中央区にある「エル・おおさか(大阪府立労働センター)」の会議室を借りて、連続3日間で行われました。初日と2日目は2級と3級の合同講義で、機械力学(二村先生)・材料力学(道廣先生)をそれぞれ午前と午後で行いました。3日目は2級と3級が

それぞれ別の部屋に分かれて、機械力学・材料力学を午前と午後で講義を行いました。その中で小生は初日と3日目の講習会を見学しました。

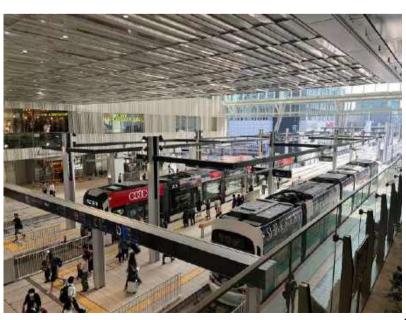
既に講義が始まっている部屋に入ると、先生が熱弁されていて、受講生の皆さんが熱心に聞き入っていました。 先生の声が部屋の中に響き渡り、学生時代にタイムスリップした様な懐かしい感じがしました。 講義が終わると 2~3 人の方が先生のもとへ駆け寄り、質問をされる場面もありました。

今回受講された皆さんの、技術者試験合格に向けた思いに、『少しでもお役に立てれば』という先生やスタッフの熱意がとても感じられる講義ではなかったかと思います。

この『技術者試験講習会』が、もっと皆さんに周知され、お役に立てることを願って筆を置きたいと思います。

新しい広島駅ビルが本格始動

今、広島で一番ホットな話題は、広島の街を走り始めて 111 年の歴史を刻む路面電車が広島駅ビルの 2 階に乗り入れたことではないでしょうか。


瀬戸内の陸の玄関でもある広島駅は、2017年に完成した新幹線コンコースや南北自由通路などの整備に続き、2025年3月には駅南側に新たな商業施設minamoa(ミナモア)がオープン。地下1階から地上9階に217店舗が入り、中国地方初の店舗も46に上ります。来館者数は平日7~8万人。土日は10万人以上と賑わいを見せています。

そのような中、本年8月3日に広島の路面電車を運行する広島電鉄(通称:広電)が広島駅ビルの2階に乗り入れる新路線「駅前大橋ルート」を開業したのです。駅ビルに路面電車が高架によって乗り入れするのは全国初の試みで、世界的に見ても例を見ないようです。JR

の改札を出てからの乗客の移動距離が 60 メートル短縮し、乗り換え時間は 1 分短縮。これまで路面電車が広島駅に寄り付くために駅前通りを大きく迂回していたルートが 200 メートル短くなり、所要時間も 4 分短縮されました。これにより、広島市中心部の八丁堀や紙屋町や平和公園などへのアクセス利便性が向上。更なる観光客や来街者の呼び込みに期待がかかっているようです。

筆者も開業早々、新しい広電広島駅から路 面電車に乗り込んでみたのですが、まず、感 じたのは、ホーム入口頭上に大きな液晶掲示 板が設置されたため、目的地に行くのに何時 にどのホームへ行けばいいのかが明確になっ たことです。ホームの両脇には各種ショップ やお土産売り場が入っているため、発車時間 になるまでエアコンの効いたビルの中で各店舗を回りながら時間を潰すことができるのも便利です。その日は紙屋町方面に向かったのですが、これまでに比べて市街地に到着するまでの時間がかなり短くなったように感じます。また、先行して3月から運用開始された新支払いシステム MOBIRY DAYS はスマートフォンアプリが利用でき、オンラインチャージも可能となったため、非常に利便性が向上しました。

今後、広島駅では、世界から人々を迎えるために広げた両手や、広島から世界へ羽ばたく翼を表現したデザインを取り入れた大屋根、国内外からの来訪者と市民が集い交流できるイベントスペースを有する広島駅から各方面へ連絡するペデストリアンデッキを設置する計画(2028年完成予定)があり、広域的な交通結節点としての機能が更に強化されていくことになります。

中部支部研修旅行レポート

株式会社ケィテック 代表取締役 金子 倫司

2025年9月18日(木)、中部支部の精鋭20名が岐阜へ繰り出しました! テーマは『歴史・技術・交流』秋晴れのもと笑いあり学びありの一日を振り返ります。

(*) 当日の流れ(ざっくり工程)

時刻	項目	備考
9:20	JR 岐阜駅集合	
10:30	ヤマザキマザック博物館	見学
12:30	昼食(城下町カフェ魚久)	食事
13:30	岐阜城	展望台
15:15	かかみがはら航空宇宙博物館	見学
17:30	交流会(焼鳥一期)	懇親

★ ヤマザキマザック工作機械博物館

午前中の最初の訪問先は、美濃加茂市にあるヤマザキマザック工作機械博物館でした。館内に足を踏み入れると、まるで"機械の歴史絵巻"に迷い込んだような光景が広がり、産業革命期の古い旋盤から現代の最新 CNC 機までがずらりと並んでいました。古い機械は鉄と木の質感が時代の重みを感じさせ、最新機は光沢ある外装にデジタルパネルが輝き、技術の進化を目で追うことができました。

特に話題となったのは、最新機のデザイン。フェラーリのデザインも手掛けた奥山清行氏が担当した外装は、ただの機械を超えた造形美を放っていました。機能だけでなくビジュアルまで洗練されている姿は、ものづくりがアートの域にまで高められることを実感させてくれました。

見学の途中、歯車や切削の仕組みを体験できる展示に触れると、「理屈では知っているけれど、実際に動きを見ると理解が深まる」とうなずく参加者も。工作機械は"機械をつくる機械"と呼ばれますが、その意味を実物を通して再確認できた瞬間でした。

「技術の歴史と未来を同時に旅した気分」「日本のものづくりの強さの源を垣間見た」といった感想が聞かれ、短い時間ながらも大きな学びを得られる見学となりました。会場を後にするときには、多くの参加者が「もっとじっくり見ていたかった」と名残惜しそうに振り返っていました。

🕠 城下町カフェ 魚久での昼食

お昼は岐阜城下町のレストランで一息。メインに天ぷらその他にも小鉢の多い 大変満足度の高い定食でした。会話も広がって笑顔になる昼食会でした。

🕰 岐阜城&展望台

昼食後は信長公が天下布武を掲げた岐阜城へ。ロープウェーに揺られながらの山登りはちょっとした運動に。ちょっと ハード過ぎました笑 ただ、天守閣から見下ろす長良川流域は絶景!

★ 岐阜かがみはら航空宇宙博物館

午後のメインイベントは「岐阜かかみがはら航空宇宙博物館」。青空の下、迫力あるブルーの外観に迎えられて館内に入ると、最初に目に飛び込んできたのは日本の航空史を彩る名機でした。戦時中の貴重な戦闘機や国産旅客機の模型を前に、参加者からは「実物のサイズ感が想像以上に大きい」「設計図だけではわからない迫力がある」といった声が聞かれ、写真や映像では伝わらない実物の存在感を肌で感じる時間となりました。その後は展示を進み、宇宙コーナーへ。そこでは宇宙服や実物大のモジュール展示があり、記念撮影を楽しむ姿が見られました。

特に印象的だったのは、案内してくださったガイドの方の知識量と説明の巧みさです。専門的な話題を一般の来館者にもわかりやすく伝えつつ、技術の背景や当時の社会との関わりまで掘り下げて語られる内容は説得力があり、参加者一同聞き入っていました。

「展示規模が想像以上!航空と宇宙の両方を一度に味わえるなんて贅沢」「ガイドさんの説明が熱すぎて、まるで飛行機愛好家の集まりに参加した気分(笑)」「写真以上に実物は迫力があり、機械設計に通じるエッセンスを感じた」といった声も寄せられ、かかみがはら航空宇宙博物館でのひとときは、まさに空と宇宙を旅した気分を味わえる特別な体験となりました。

第2部交流会(焼鳥一期)

旅の締めくくりは地元料理での交流会。焼鳥を片手に、業界トークから趣味の話まで盛り上がりました。『管理職ばかりで話題が濃い!』と笑い声が絶えませんでした。

まとめと所感

- ・マザックのデザインはフェラーリデザイナー奥山清行氏によるもの。まさに工業製品の芸術!
- ・全体を通して、目的達成度は120%!
- ・岐阜城では体力勝負もあり、次回は服装の案内を工夫すべきという反省点も。
- ・バス運転手のプロ意識に感銘。時間通りの進行に一役買っていただきました。
- ・一日があっという間に過ぎ、学びと交流がたっぷり詰まった忘れられない研修となりました。

一般社団法人 日本機械設計工業会 は、我が国唯一の機械設計業界の公益法人として 認可され、さまざまな活動を通じて機械設計業のさらなる発展に寄与しています。

色田!

企業年金基金・生命保険への加入

当工業会のスケールメリットを生かして、企業年金 基金や生命保険への加入ができます。 いざという時の備えとなります。

セミナー・講習会・研修

会員料金で人材育成・経営基準を強化するための 専門情報や技術情報が入手できます。

試験制度

機械設計技術者1級・2級・3級認定試験を実施。 設計技術者の社会的地位向上を図ります。

機関誌KISETU

景況調査・各種アンケート結果・企業情報等が 掲載された機関誌KISETUを配布。 日々の活動に役立ちます。

経営者研修

アウトソーシングの時代に向け、機械設計業の経営 者の研鑽を積み、経営改善・発展を図ります。

ビジネスチャンス

会員同士の交流を通じて幅広い情報を得ることができます。 ビジネスチャンスが広がり、企業の発展につながります。

詳しくは工業会ホームページをご覧ください

https://www.kogyokai.com

入会の申し込み・お問い合わせは ~~~~~~~

中部支部事務局 関西支部事務局 中・四国支部事務局 九州支部事務局

関東支部事務局 〒104-0033 東京都中央区新川2丁目6番4号新川エフ2ビルディング4階 〒460-0002 名古屋市中区丸の内2丁目14番4号エグゼ丸の内ビル6階606号室 〒530-0012 大阪市北区芝田2丁目3番19号東洋ビル本館3階312号 〒737-0807 広島県呉市江原町12-30

〒806-0067 北九州市八幡西区引野1-2-14

TEL 03-6222-9310 FAX 03-6222-9315 TEL 052-253-5117 FAX 052-253-5127 TEL 06-6359-0788 FAX 06-6359-0778

TEL 0823-27-8640 FAX 0823-27-8641 TEL 093-622-6711 FAX 093-622-6712

会員限定サービス 1級小論文対策オンライン講座開設しました!

日本全国から機械設計技術者の皆さんが、企業の枠組みを超え、機械設計技術の向上を目指し参加されています。 機械設計技術者1級・2級取得者の皆様の積極的なご参加をお待ちしております。

JMC (日本機械設計技術者クラブ) は、(一社)日本機械設計工業会が主催する機械設計技術者試験1級、および 2級取得者に入会資格が与えられる機械設計のプロが集まる組織です。

⋈お問合せ

info@imclub.org

■ ホームページ

https://www.jmclub.org/index.html

日本機械設計技術者クラブ

Q検索

令和7年JMC 定時総会 研修レポート

株式会社カンセツ 黒田 考亮

令和7年7月18日の晴天の浜松は32度。

新幹線出口からすぐ、待ち合わせ場所の北口地下モニュメントに向かう際、私を迎え入れたのは、夏特有の蒸暑さではなく遠州の空っ風と言われる心地よい風だった。

以下に令和7年度JMC 定時総会&研修に、総勢18名で参加したレポートを記します。

昼食:うなぎ八百徳

当日は、2025年土用の丑の日の1日前ということで昼食はうなぎ。

創業明治うなぎ専門店八百徳で名物ウナギ茶漬け を頂きました。

久々の集まりに各々饒舌であった皆さんも、ウナ ギが来るや否や寡黙に食事されておりました。

SUZUKI 歴史館

マイクロバスに乗り浜松駅より20分。

本社に隣接される SUZUKI 歴史館に訪問しました。

1時間半の見学時間が短く感じるほど、多くの展示品がありました。

1F インフォメーションカウンター 魔改造の夜展示品、ハヤブサ仕様 のバイクや他展示品、土産物など

2F 現在のクルマづくり 開発・生産ラインの再現ブース、 フライトシミュレータ(浜松航空自衛隊) 世界の SUZUKI 工場の紹介ブース

3F ものづくりの歴史

鈴木式織機の歴史、戦後→現在までの SUZUKI製品の展示、水素エンジンや 燃料電池車など環境改善・技術革新に もチャレンジしてきた SUZUKIの歴 史を展示

楽器博物館

浜松駅近くにある博物館。 世界から集められた楽器が 数多く展示されている。

ここでしか見ることのできない楽器、実際に触れることもでき楽しい時間を過ごせました。

定時総会は別記。

1F アジアと日本の楽器、国産洋楽器と電子楽器、特別展スペース、 楽器や音具が演奏できる体験ルーム

B1F オセアニアとアフリカ、アメリカ、ヨーロッパの楽器、 ヨーロッパの鍵盤楽器

浜松餃子: 浜太郎

一日の終わりは、気楽に餃子で一杯。

少し宴会席は手狭でしたが、充実した一日を過ごした皆さまとは、その狭さが心地よく。 地元静岡麦酒も美味で、多種多様の浜松餃子との相性も良く堪能できました。

以上で、忙しくも楽しい研修の一日が終わりました。 参加された・お世話になった皆様にはこの場を借り改めてお礼を申し上げます。

興南設計株式会社 兼信 丰次

日時:令和7年7月18日(金) 開会 16:30 閉会 17:30

場所:浜松駅前ビル貸会議室 4F B会議室

JMC 会員数:総会確定会員数50名 会員出席者 17名+事務局1名 合計18名 委任状提出19名

今回の定時総会が定款通り会員の3分の2以上の出席(委任状を含む)を以って成立している事を報告した上で、武内会長の挨拶から始まりました。

令和6年度の事業報告、本年度の事業計画等、令和6年度の収支決算、令和7年度の収支予算案の報告で承認を得られました。

また、本年度から代表世話役人(九州地区) 金光 康明氏→加治 耕二氏

監査役 金光 康明氏→猪上 澄男氏(中部地区)に代わられ承認を頂きました。

その他として

本年度は JMC 継続会員 46名

新規会員 4名

計 50名

JMC の活動として、機械設計技術者試験に関する参考書籍の発行や、ビデオ講座ならびに講習会の開催なども行ってきているが、その様な取り込み内容が会員の皆様に伝わっていないこともあり、JMC 会員は横ばいで、今後は減少することも予想出来る。これは会員の高齢化(会社の退職者)、また JMC のメリットが明確に見えていない等。今後、JMC 会員拡大に向け取り組みをどうするか課題が示されました。

この件に関して代表世話役人会でも今後議論をしていきます。

三共技研工業株式会社 山﨑 輔

前号 KISETU 143 号の関西支部だよりでも紹介されました、二世を中心とした若手経営者の会「KJ 会」では、令和 7 年 7 月 13 日 (日) から 18 日 (金) までの日程でインドネシア視察旅行を実施しました。ここに簡単ではありますが、写真を交えて内容をご紹介してみたいと思います。

13日(日)羽田空港に参加者6名が集合し、同便にて出発。約7時間30分のフライトを経て、現地時間16時頃にジャカルタにあるスカルノ・ハッタ国際空港へ到着。気温は33度ほどで、湿気と日差しが肌に痛い最近の日本の夏の方が暑いと感じられました。

到着後は今回の旅行をコーディネート頂いた、中四国支部 興南設計(株)様の現地法人「PT KONAN」のテグ社長とエヴァ様にご案内頂きホテルへ移動。夕食はシーフードレストランにて現地の辛旨い料理を堪能しました。

14日(月)モスクや博物館などジャカルタ市内視察の後、インドネシア新幹線(現地名ウッス)に乗車し、中国製の乗り心地にドキドキしながらバンドンへ移動。参加者からは日本の新幹線と比べて、トイレがより広くて豪華だが床の振動が気になるとか、窓が倍以上大きいので景色は良く見えるが強度が低いのでは、などの意見が・・。

夕方からは「PT KONAN」の皆様が毎年恒例で開催されている、Family Gathering の BBQ にお邪魔しました。山羊の丸焼きをご馳走になりながら、チーム対抗のゲームに KJ 会一行も参加。若くエネルギッシュな社員の皆様と日本語にて交流し、和やかな時間をご一緒させて頂きました。

PT Konan Indonesia 社員のみなさん

BBO 懇親会

15日(火)前日のBBQ 会場が温泉地にありスパ施設も兼ねているため、一行は朝の散歩がてら足湯を満喫。その後タンクパンクラフ山の火口や、伝統芸能(アンクルン演奏・人形劇)を見学しました。

夜はバンドン工科大学の学生 を会食。未来の技術者とのが は、テグ社長に通訳頂きながら も、片言の英語と身振り手の を交え談笑しながら、現地の就 を交え談笑生のみなさんの 職事情と学生のみなされ な夢を聞くことが出来た貴重な ひとときとなりました。

バンドン工科大学

午後はチカランへ移動し工業団地を視察。自動車を中心とした日系企業から、最近は中国企業の台頭が激しい状況と、10年前に現地を訪問した参加者から、当時この一帯は森林だったとの話もあり、変化するスピードの早さにインドネシアのパワーを感じました。その後「イオンモール デルタマス」を視察。施設の規模に圧倒されつつも、内装は日本国内とほぼ同じ雰囲気で見慣れた店舗の看板の数々に、一瞬日本に戻ったような感覚になりました。

プレゼン時の様子 (PT Konan Indonesia)

17日(木)「PT KONAN」本 社を訪問し社内を見学。社員の 皆様がこれまで取り組まれつまた業務実績のプレゼンテー本とは ンを拝聴し、その後は日本といった ショインを行いて活発なディスアを ジョイなッとといった。終空 ショイなッは スカルノ・ハッタ国際(金) 早朝 7:00 発の便でジャカルタを 日本時間 16:30 に羽田空港。 着し、無事解散となりました。

短期間ながら大変充実した視察旅行となり、現地の経済や文化を肌で感じることが出来る貴重な機会となりました。「PT KONAN」のテグ社長とエヴァ様、そして社員の皆様には多大なるご厚意を賜りましたこと、改めて心より御礼申し上げます。

機械設計技術者試験

機械設計技術者試験は、安全で効率のよい機械を経済的に設計する機械設計技術者の総合能力を認定し、機械設計技術者の技術力向上と社会的評価の適正な確立を図り、我が国機械産業の振興に寄与することを目的としています。また、平成10年度より追加された3級は、主に新人技術者、学生の技術水準を適正に評価することを確立し、機械設計技術者認定制度を機械設計技術者のほぼ全域をカバーした資格制度に発展させることを目的としています。

令和7年度は、令和7年11月16日(日)実施(受付終了) 令和8年度は、令和8年11月15日(日)実施予定

◆ 1 級試験実施の概要、および科目

機械及び装置の基本仕様決定に必要な計算、構想図の作成等の基本設計業務を行なえる能力に達した技術者を対象とした 試験を行ないます。

1級試験科目時間割(試験時間9:30~16:30)

※年度によって科目の組み合わせが変更になる可能性があります。

	時間	科目
第1時限	9:30~11:40	設計管理関連課題、機械設計基礎課題、環境経営関連課題
第2時限	12:40 ~ 14:40	実技課題(問題選択方式)
第3時限	15:00~16:30	小論文

1級試験科目

-n -l <i>fr</i> -tm == 1 -m ==	164 hand a second design of the second design of th
設計管理関連課題	機械設計に関わる管理・情報等に対する知識
機械設計基礎課題	機械設計の基本となる計算課題を含む知識
環境経営関連課題	機械設計の管理者として必要な環境・安全に対する知識
実技課題 (問題選択方式)	設計実務に関わる計算を主体とした問題が複数出題され、その中から指定された 問題数を選択して解答
小論文	出題テーマから1つ選択し、1300 ~ 1600 字程度の論文を作成

[実技課題]

—出題数 5 題 3 題選択

◆ 2 級試験実施の概要、および科目 ※令和3年度から下記科目改定を実施

基本設計に基づき、機械及び装置の機能・構造・機構等の具体化を図る計画設計業務を行なえる能力に達した技術者を対象とした試験を行ないます。

※年度によって科目の組み合わせが変更になる可能性があります。

	時間	科目
第1時限	9:30~11:40	・機械設計分野
		・熱・流体分野
		・メカトロニクス分野
		以上、3科目はマークシート方式
第2時限	12:40 ~ 14:40	・力学分野
		・材料・加工分野
		・環境・安全分野
		以上、3科目はマークシート方式
第3時限	15:00 ~ 16:30	応用・総合は記述式解答方式

◆3級試験実施の概要、および科目

※年度によって科目の組み合わせが変更になる可能性があります。

	時間	科目
第1時限	12:00 ~ 14:00	機構学・機械要素設計、流体工学、工作法、機械製図 全科目、マークシート方式
第2時限	14:20 ~ 16:20	材料力学、機械力学、熱工学、制御工学、工業材料 全科目、マークシート方式

◆受験に必要な実務経験年数

機械設計技術者試験 受験資格要件緩和について

3級取得者の方に、より多くの2級チャレンジ機会を設けるため、令和5年度から、機械設計技術者2級受験に係る、 3級取得者の実務経験年数を下記の通り改定いたしました。 該当する3級取得者の方からの挑戦をお待ちしております!

		実務経験年数					
	最終学歴	1 級		2			
		直接受験	2 級 取得者	直接受験	3級取得者	3 級	
	大学院・大学・高専専攻科	5年		3 年	2 年		
工学系	短大・高専・専門学校	7年	2級取得後、 翌年から受験 可能	5年	4 年→ 3 年	実務経験不問	
	その他(上記以外)	10年	38 C.	7年	6 年→ 4 年		

※1級直接受験の場合、当団体指定の職務経歴書を提出していただき受験資格審査を受けていただく必要があります。

◆1級直接受験手続き方法

1. 職務経歴書の提出→2. 審査料支払い→3. 資格審査→4. 審査結果報告→5. 受験資格承認→6. 受験申請(WEB申請)です。

・当団体指定の職務経歴書の入手方法

原則、工業会ホームページ https://www.kogyokai.com/ に接続しダウンロードして下さい。 或いはご希望により FAX・郵送でも対応させていただきます。

配布期間:工業会ホームページをご覧下さい。

・提出方法

郵送・宅急便・スキャナで画像化して E メール送付可 提出期間:工業会ホームページをご覧下さい。

・資格審査料 5,500円(税込み)(支払方法は別途マニュアルにて)

※資格審査料は、資格審査が承認されない場合も返金されません。 ※支払手数料等は、審査提出者の負担です。

・審査結果通知方法

審査料の入金を確認次第、速やかに審査を行い原則 E メールで通知、ご希望により FAX・郵送でも対応させていただきます。その際、承認された者には「承認 No.」を同時に通知いたします。

◆各級の受験料

1級	33,000 円(税込み)
2 級	22,000 円(税込み)
3 級	8,800 円(税込み)

2025 年版 機械設計技術者試験問題集

一般社団法人 日本機械設計工業会 [編]

B5 判 232 頁 定価 3,190 円(税込)

ISBN978-4-274-23363-0

本書は (一社)日本機械設計工業会が実施・認定する技術力認定試験(民間の資格)「機械設計技術者試験」1級、2級、3級について、令和6年度(2024年)11月に実施された試験問題の原本を掲載し、機械系各専門分野の執筆者が解答・解説を書き下ろして、(一社)日本機械設計工業会が編者としてまとめた公認問題集です。合格への足がかりとして、試験対策の学習・研修にお役立てください。

3級機械設計技術者試験過去問題集

─令和5年度/令和4年度/令和3年度─

一般社団法人 日本機械設計工業会 [編]

B5 判 232 頁 定価 3,080 円(税込)

ISBN978-4-274-23384-5

本書は (一社)日本機械設計工業会が実施・認定する技術力認定試験(民間の資格)「機械設計技術者試験」3級について、過去3年(令和5年度、令和4年度、令和3年度)に実施された試験問題の原本を掲載し、機械系各専門分野の執筆者が解答・解説を書き下ろして、(一社)日本機械設計工業会が編者としてまとめた公認問題集です。3級の試験対策に的を絞った本書を学習・研修にお役立てください。

機械設計技術者試験準拠

機械設計技術者のための基礎知識

機械設計技術者試験研究会 [編]

B5 判 392 頁 定価 3,960 円(税込)

ISBN978-4-274-22937-4

(一社)日本機械設計工業会が主催する「機械設計技術者試験」には、本書の9科目が含まれています。機械系の学生が学ぶべき必須の4大力学(材料力学、機械力学、流体力学、熱力学)をはじめ、機構学・機械要素設計、機械を制御する制御工学、設計の基礎となる工業材料、設計の基礎となる工作法、機械製図の9科目です。本書は、試験9科目の基礎・基本、CAD/CAMをわかりやすく解説し、各章末に試験対策用の演習問題を掲載しています。力学など計算問題が多い分野は、本文中に例題を多く取り入れています。

機械設計技術者のための4大力学

朝比奈奎一[監修]/廣井徹麿・青木繁・大髙敏男・平野利幸[共著]

A5 判 352 頁 定価 3.080 円(税込)

ISBN978-4-274-22933-6

(一社)日本機械設計工業会が主催する「機械設計技術者試験」に対応できる構成を主眼とし、初級技術者や機械設計を学ぶ学生のために、機械力学、材料力学、流体力学、熱力学をわかりやすく解説。「機械設計技術者試験」対策として、各章末に「演習問題」、巻末に「解答」を掲載しています。

オーム社 〒 101-8460 東京都千代田区神田錦町 3-1

◎ 本体価格の変更、品切れが生じる場合もございますので、ご了承ください。

◎ 書店に商品がない場合または直接ご注文の場合は下記宛にご連絡ください。

TEL 03-3233-0644 / FAX 03-3233-3440

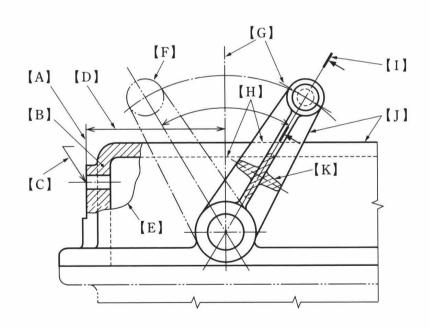
https://www.ohmsha.co.jp/

平成24年度3級機械製図より問題

問題

次の文章の空欄【A】~【K】に当てはまる語句を〔語旬群〕から選び、その番号を解答用紙の解答欄【A】 ~【K】にマークせよ.

ねじの呼びの表し方で、ねじの種類を表す記号 Tr は A, Rc は B, R は C, G は D を表す。 また、 $M8 \times 1 - LH$ において、M は E を表し、X を表し

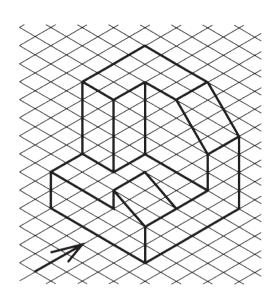

めねじのねじ込み部の図において、 $M12 \times 16 / \phi 10.2 \times 20$ と表示されている場合、(12) は【H】を表し、 $(\times 16)$ は【I】を表し、 $(\phi 10.2)$ は【J】を表し、 $(\times 20)$ は【K】を表している。

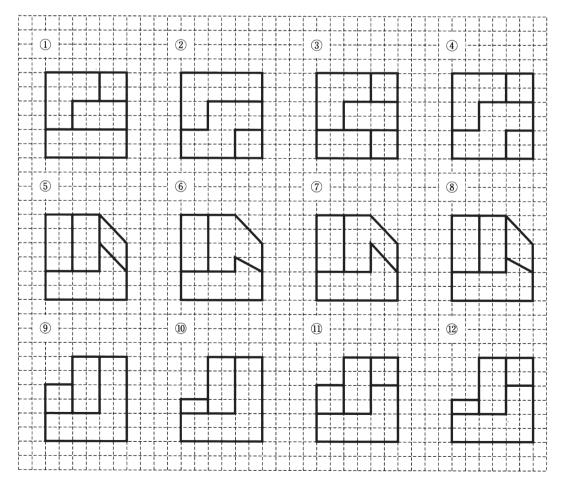
〔語句群〕

①メートル細目ねじ②メートル並目ねじ③管用テーパおねじ④呼び径⑤管用平行ねじ⑥メートル台形ねじ⑦管用テーパめねじ⑧右ねじ⑨下穴の直径⑩ねじ部長さ⑪ピッチ⑫左ねじ

(13)リード (14)下穴深さ

問題 **2** 下図の空欄【A】~【K】に当てはまる線の用途による名称を〔語句群〕から選び、その番号を解答用紙の解答欄【A】~【K】にマークせよ。


〔語旬群〕


①外形線②寸法線③寸法補助線④引出線⑤回転断面線⑥中心線⑦かくれ線⑧想像線⑨破断線⑩重心線⑪ハッチング⑫切断線

平成24年度3級機械製図より問題

下図に示した品物の立体図について、投影図を立体図の下に示す。 正しく描かれている投影図を $(1)\sim(0)$ の中から選択し、正面図は解答欄【A】、平面図は解答欄【B】、右側面図は解答欄【C】に、その番号をマークせよ。 ただし、矢の向きを正面図とする。

平成24年度3級機械製図の解答

問題

解答

А	В	С	D	Е	F	G	Н	ı	J	К
6	7	3	5	1	11)	12)	4	10	9	<u>14</u>)

解 説

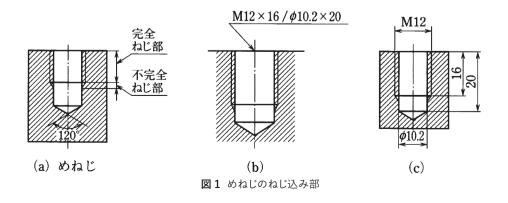
ねじの呼びの表し方は,**表 1** に示すようにねじの種類を表す記号,直径または呼び径を表す数字およびピッチまたは 25.4mm (1 インチ) におけるねじ山数による.

ねじの種類 ねじの呼びの 区分 引用規格 ねじの種類 を表す記号 表し方の例 並目 M8 一般用 M IIS B 0205 ピッチをmm メートルねじ 細目 $M8 \times 1$ で表すねじ メートル台形ねじ $Tr10 \times 2$ Tr JIS B 0216 テーパおねじ R 3/4 R 管用テーパ テーパめねじ Rc Rc 3/4 JIS B 0203 ピッチを山数 ねじ で表すねじ 平行めねじ Rp Rp 3/4 管用平行ねじ G G 1/2 JIS B 0202

表1 ねじの種類を表す記号およびねじの呼びの表し方

(JIS B 0205:2001, JIS B 0123:1999による)

ピッチを mm で表す場合以下のように表す.


ねじの種類を表す記号 ねじの呼び径を表す数字 × ピッチ

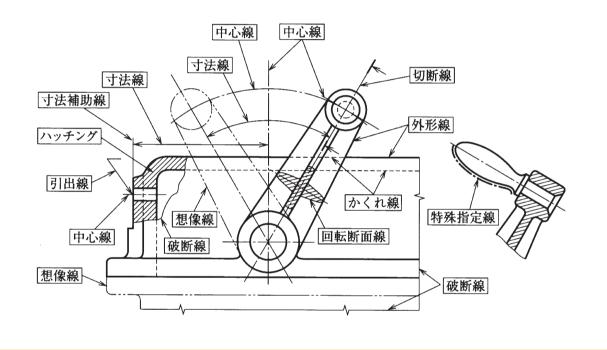
[例] M10 × 1:メートル細目ねじ 呼び径 10mm ピッチ 1mm

ねじ山の巻き方向は、左ねじの場合略号 "LH" を追加して示す。 右ねじの場合には一般に表示しないが、必要な場合には略号 "RH" を追加して示す。

図1に示すめねじのねじ込み部において,

M12 × 16 / ϕ 10.2 × 20 と表示されている場合, (12) は呼び径を表し, (× 16) はねじ部長さを表し, (ϕ 10.2) は下穴の直径を表し, (× 20) は下穴深さを表している.

平成24年度3級機械製図の解答


問題 **2**

解答

А	В	С	D	Е	F	G	Н	I	J	К
3	11)	4	2	9	8	6	7	(12)	1	(5)

解 説

図2は、線の用途による名称を示す.

ご好評いただいている電子書籍版過去問題集に下記6つの電子書籍を、新しくラインアップに加えました。

- ・電子書籍「1級3年分(平成27~29年)機械設計技術者試験 過去問セット|
- ・電子書籍「1級3年分(平成30~令和2年)機械設計技術者試験 過去問セット|
- ・電子書籍「2級3年分(平成27~29年)機械設計技術者試験 過去問セット|
- ・電子書籍「2級3年分 (平成30~令和2年)機械設計技術者試験 過去問セット」
- ・電子書籍「3級3年分(平成 24 ~ 26 年)機械設計技術者試験 過去問セット」
- ・電子書籍「3級3年分(平成27~29年)機械設計技術者試験 過去問セット」

各 2,000 円 (税込み)

※従来販売品も含めて(一社)日本機械設計工業会会員企業所属社員様は2割引きでご購入いただけます。

受験対策はもちろんスキルアップにお役立ていただけます。

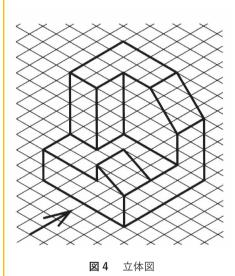
詳細・お申込は https://www.kogyokai.com/exam/post_30 をご覧ください。

URL http://goo.gl/VcdGUg

工業会会員専用 過去問セット 購入フォーム

定価 4,000 円のところ 10% off の各 3,600 円 (会員割引適用) で購入可能

直近の過去問題は(一社)日本機械設計工業会のホームページ https://www.kogyokai.com/exam/past/ に掲載されています。


平成24年度3級機械製図の解答

解答

А	В	С
6	4	12)

解 説

品物の図形を正確に表すときは、製図では投影面を投影線に直角に置いた正投影を用いる。 一般に、一つの投影面に描いた投影図だけで形状を表すことはできないので、いくつかの投影面 を設定して正投影による図形を描き、組み合わせて品物を平面上に図示する。その際品物の形状 を最もよく表す面を選んで正面に置き、この方向から見た面の図を正面図という。また、品物の 上から見た面の図を平面図といい、品物の右から見た図を右側面図という。各投影図の配置は、 **図5**に示す. したがって, **図4**の立体図の投影図は, **図6**のようになる.

平面図 正面図 右側面図

図5 各投影図の配置

図6 図4の投影図

事務局より

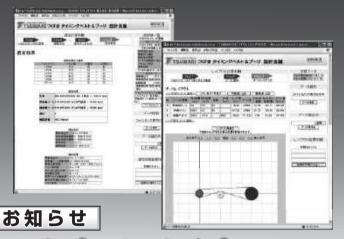
お知らせ 🖊

下記、登録代表者変更がありましたのでお伝えします。どうぞよろしくお願いいたします。

■登録代表者変更(中部支部)

•会社名:岡設計株式会社

新:代表取締役 岡 祐司(おか ゆうじ)様


年間購読(12冊分) 16,500円【送料・税込み、当社より毎月直接送付】 ただいま年間予約購読を受付けています。FAXorメールにてお申込みください。

(西暦) ツールエンジニア	年 月号から購訪	^旬 売申込みします(^{再月} 冊)	
氏名				
勤務先(または自宅)住産	所 〒 -			
勤務先名		TE	EL.	
所属部課		FA	XX.	
-				

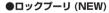
つばきWebサイトでベルト・プーリの 設計検討が出来ます!

● 選定計算機能 ● レイアウト計算機能

【サイトまでの手順】
① つばき ホームページアドレス
② トップ
② トップ
③ タイミングベルト
④ ゴムベルト
⑤ 選定サイト

ロックプーリ Sタイプ 3D-CAD データ公開開始!!

キャデナス・ウェブ・ツーキャド(株)社のサイトにてタイミングプーリ 標準・追加工タイプ に加えロックプーリの 3D-CAD を公開開始しました。是非ご活用下さい。(2012 年 3 月~)


【サイトまでの手順】

①つばき ホームページアドレス

https://www.tsubakimoto.jp (

②トップ 📗 ③プーリ 📗 ④タイミングプーリ 📗 ⑤3D-CAD

対象品

●ロックプーリ (NEW)

● 標準プーリ (PX、台形歯形)

PT30P8M25AF-KJ LKD1-H25-J8

PT30P8M25BF-KJ LKD1-H25-J8

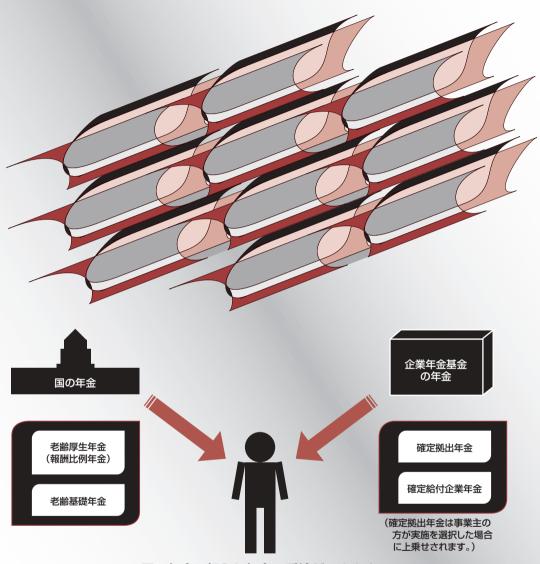
PT30P8M25AF-SS2622

PT24P8M25AF-SS2617

※ロックプーリは S タイプのみの掲載となります。

図面データ(CAD データ)はキャデナス・ウェブ・ツー・キャド (株)の CAD 図面ライブラリーサイト「PARTcommunity」へのリンクにより提供いたします。つばきタイミングブーリの CAD データを 2D・3D 形態でダウンロード可能です。「PARTcommunity」からのダウンロードの際には CADENAS WEB2CAD のユーザー登録が必要です(初回のみ)。

株式 椿本チエイン


本社/〒530-0005 大阪市北区中之島3-3-3 中之島三井ビルディング URL https://www.tsubakimoto.jp

●お問い合わせは ---- お客様サービスセンター (フリーコール) Tel:(0120)251-882 Fax:(0120)251-883

東京(03)6703-8405 大宮(048)648-1700 名古屋(052)571-8187 大阪(06)6441-0309

広島(082)568-0808 九州(092)451-8881

「企業年金基金」で 安心な職場、豊かな老後。

国の年金に加えた年金の受給ができます

◎ 福祉事業も実施しています

◎ 間位事業の夫施して▼あり					
種 類	支給の時期	金額			
結婚祝金	加入期間 1 年以上の加入者が結婚したとき (女性は退職後3ヶ月以内を含む)	10,000円			
出産祝金	加入期間1年以上の加入者又はその配偶者が 出産したとき(女性は退職後6ヶ月以内を含む)	1児10,000円			
死亡弔慰金	加入期間1ヶ月以上の加入者が亡くなったとき	加入期間3年未満・・・20,000円 加入期間3年以上・・・30,000円			
保養施設の 利用補助	本人・家族が指定する施設を利用したとき	1人1泊2,000円			

Pension Fund of Japan Machinery Design III Pension Fully 0.54pa. IIIIIII 日本機械設計業企業年金基金

〒103-0011 東京都中央区日本橋大伝馬町14番1号 住友生命日本橋大伝馬町ビル3F

> TEL.(03)3661-9501(代) FAX.(03)3661-9503

