令和２年度
機械設計技術者試験
１級 試験問題 Ⅱ

第２時限　12：40～14：40（120分）

4. 実技課題

[4-1] [4-2] [4-3] [4-4] [4-5]

・5問中3問解答のこと。
・実用機械についての重点を絞った出題

令和２年１１月１５日実施

主催：一般社団法人 日本機械設計工業会
【4．実技課題】

【4－1】下図に示すような歯数の差が等しい組合せのかさ歯車駆動方式のローラコンベヤがある。
このコンベヤに関する下記の設問（1）～（3）に答えよ。解答は、計算過程を含めて解答用紙の解答欄に記述せよ。

設問

（1）ローラを本当たりに必要な伝達トルク $T \,[\text{N} \cdot \text{m}]$ を求めよ。
ただし、搬送重量 $M = 250 \text{kg}$、重量り摩擦係数 $\mu = 0.06$ とする。

（2）前問（1）で求めた伝達トルクより、かさ歯車に必要な最大伝達トルク $T_0 \,[\text{N} \cdot \text{m}]$ を求め、表1よりモジュールサイズ m を選定せよ。
ただし、かさ歯車の歯数は駆動側 z_1、被動側 z_2 共に 20 枚、歴面強さに対する安全率 $S = 3$ とする。

<table>
<thead>
<tr>
<th>共通仕様</th>
<th>精度等級</th>
<th>JIS B 1704 : 1978 4級</th>
</tr>
</thead>
<tbody>
<tr>
<td>齒形</td>
<td>グリーン</td>
<td></td>
</tr>
<tr>
<td>压力角</td>
<td>20°</td>
<td></td>
</tr>
<tr>
<td>ねじれ角</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>材料</td>
<td>S45C</td>
<td></td>
</tr>
<tr>
<td>熱処理</td>
<td>表面高周波焼入れ</td>
<td></td>
</tr>
<tr>
<td>表面硬度</td>
<td>50 〜 60HRC</td>
<td></td>
</tr>
</tbody>
</table>

表1 かさ歯車の主要寸法および仕様一覧表（歯数20枚の場合）

<table>
<thead>
<tr>
<th>モジュール m</th>
<th>穴径</th>
<th>ポス径</th>
<th>基準円直径</th>
<th>齒先円直径</th>
<th>齒側距離</th>
<th>全長</th>
<th>齒先距離</th>
<th>ポス長さ</th>
<th>穴長さ</th>
<th>齒幅</th>
<th>曲げ強さ</th>
<th>曲面強さ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A_h</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>21.41</td>
<td>20</td>
<td>13.95</td>
<td>10.71</td>
<td>8</td>
<td>12</td>
<td>1207</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>12</td>
<td>26</td>
<td>30</td>
<td>32.12</td>
<td>30</td>
<td>21.24</td>
<td>16.06</td>
<td>13</td>
<td>19</td>
<td>8</td>
<td>0.90</td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td>15</td>
<td>34</td>
<td>40</td>
<td>42.83</td>
<td>37</td>
<td>24.89</td>
<td>18.41</td>
<td>14</td>
<td>22</td>
<td>10</td>
<td>3.13</td>
</tr>
<tr>
<td>2.5</td>
<td>18</td>
<td>20</td>
<td>42</td>
<td>50</td>
<td>53.54</td>
<td>48</td>
<td>32.54</td>
<td>24.77</td>
<td>19</td>
<td>29</td>
<td>12</td>
<td>13.7</td>
</tr>
<tr>
<td>3</td>
<td>22</td>
<td>25</td>
<td>50</td>
<td>60</td>
<td>64.24</td>
<td>58</td>
<td>39.84</td>
<td>30.12</td>
<td>23</td>
<td>35</td>
<td>15</td>
<td>24.2</td>
</tr>
<tr>
<td>3.5</td>
<td>28</td>
<td>30</td>
<td>60</td>
<td>70</td>
<td>74.95</td>
<td>65</td>
<td>44.13</td>
<td>32.47</td>
<td>25</td>
<td>40</td>
<td>18</td>
<td>39.0</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>32</td>
<td>64</td>
<td>80</td>
<td>85.65</td>
<td>75</td>
<td>50.78</td>
<td>37.83</td>
<td>27</td>
<td>45</td>
<td>20</td>
<td>57.3</td>
</tr>
</tbody>
</table>

寸法単位：mm
（3）表2の「かさ歯車の計算式」を参考にして、前問で選定した「かさ歯車」の軸方向力 $F_x \ [N]$ を求めて。

表2 かさ歯車の計算式

<table>
<thead>
<tr>
<th>No.</th>
<th>仕様</th>
<th>記号</th>
<th>記号</th>
<th>計算式</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>接触角</td>
<td>Σ</td>
<td>度</td>
<td>設定値</td>
</tr>
<tr>
<td>2</td>
<td>モジュール</td>
<td>m</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>圧力角</td>
<td>a</td>
<td>度</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>齲数</td>
<td>z</td>
<td>一</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>齲幅</td>
<td>b</td>
<td>mm</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>入力トルク</td>
<td>T_1</td>
<td>N・m</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>基準円直径</td>
<td>d</td>
<td>mm</td>
<td>zm</td>
</tr>
<tr>
<td>8</td>
<td>基準円すい角</td>
<td>$\delta_1 \cdot \delta_2$</td>
<td>度</td>
<td>$\tan^{-1} \left(\frac{a_1}{z_2} \right) \cdot (\Sigma - \delta_1)$</td>
</tr>
<tr>
<td>9</td>
<td>中央基準円直径</td>
<td>d_m</td>
<td>mm</td>
<td>$d - b \sin \delta$</td>
</tr>
<tr>
<td>10</td>
<td>接線力</td>
<td>F_t</td>
<td>N</td>
<td>$\frac{2000 \cdot T}{d_m}$</td>
</tr>
<tr>
<td>11</td>
<td>軸方向力</td>
<td>F_x</td>
<td>N</td>
<td>$F_t \tan \alpha \sin \delta$</td>
</tr>
<tr>
<td>12</td>
<td>半径方向力</td>
<td>F_r</td>
<td></td>
<td>$F_t \tan \alpha \cos \delta$</td>
</tr>
<tr>
<td>13</td>
<td>出力トルク</td>
<td>T_2</td>
<td>N・m</td>
<td>$\frac{F_x \cdot d_{m2}}{2000}$</td>
</tr>
</tbody>
</table>

《参考》かさ歯車の歯に作用する力の概念図

| 駆動歯車は小歯車 | ➔ |
| 受動歯車は大歯車 | ➔ |

©JMDIA
（1）次の振動に関する文中の空欄【A】～【E】を埋めるのに最も適切な語句を下記の語句群から選び、その番号を解答用紙の解答欄に記入せよ。

質量 m_1 とばね定数 k_1 からなる振動系に、周期的な外力 $P \sin \omega t$ が作用するとき、角振動数 ω が【A】に近いとき共振の危険がある。そこで、質量 m_2 とばね定数 k_2 からなる振動系を質量 m_1 に付けて、これによって本体（m_1, k_1）の共振を防ぐことが出来る。付加する振動系の角振動数【B】を加振力の ω に等しく定めると、この質量 m_2 だけが振動して、本体は【C】したままになる。

質量 m_1 の変位を x_1、質量 m_2 の変位を x_2 として解くと、本体は【C】し、付加した振動系だけが振動する。そして、その振幅は、ばねの力が外力 P と丁度釣り合うだけの値になる。すなわち、$P = 【D】$ の関係になる。こういう原理によって振動を防ぐ装置を【E】という。

【語句群】

① k_1/m_1 ② k_2/m_2 ③ $\sqrt{k_1/m_1}$ ④ $\sqrt{k_2/m_2}$
⑤ $[x_1]$ ⑥ $[x_2]$ ⑦ 絶縁 ⑧ 静止
⑨ 動吸振器 ⑩ 変位 ⑪ 強制振動

（2）騒音についての次の文章の空欄【A】～【C】に入るべき最適な数値を解答用紙の解答欄に記入せよ。

1）点音源から距離 r_1 と r_2 [m] 離れた2点の音圧レベル L_{d1} と L_{d2} [dB] との間には

$$L_{d1} - L_{d2} = 20 \log \frac{r_2}{r_1} \quad (ただし, r_1 < r_2 とする。)$$

の関係が得られる。すなわち、2点間の距離が2倍になるごとに、音圧レベルは【A】dBずつ減衰する。

2）これに対して、無限遠音源においては、音源から距離 r_1 と r_2 [m] 離れた2点の音圧レベル L_{d1} と L_{d2} [dB] との間には

$$L_{d1} - L_{d2} = 10 \log \frac{r_2}{r_1} \quad (ただし, r_1 < r_2 とする。)$$

の関係となり、2点間の距離が2倍になるごとに【B】dBの減衰がある。

3）対象とする騒音以外の音を暗騒音（background noise）というが、対象の音がある時とない時の差が【C】dB以上あれば、暗騒音の影響は無視出来る。この差が【C】dB未満の時は、補正することで、対象の騒音が単独であるときの騒音レベルを推定できる。
（3） 地上より1.0 [m] の等しい高さで点音源 S と受音点 P との距離が約 100 [m] 離れた位置にある。地上よりも 2.4 [m] 高い場所を音源より 0.75 [m] のところに建てるとき、340 [Hz] の音の成分はどの程度減衰するのか。その減衰量 R [dB] を求めよ。
解答は、計算過程を含めて解答用紙の解答欄に記入せよ。

注釈

\[N = \frac{2 \cdot \delta}{\lambda} = \frac{\delta \cdot f}{170} \]

\[N : \text{フーリエ数} \]
\[\lambda : \text{波長 (m)} \]
\[f : \text{周波数 (Hz)} \]

N の正負は:

S と P が見通せない場合は正、場所が低く S と P が見通せる場合は負の値をとる。\(N < -0.3 \) の場合は、減衰量 0 とする。

図の(a)は無指向性点音源、(b)は無限長線音源の減衰量を表す。
【4-3】下記の図は液体貯槽である。次の設問（1）〜（5）について答えよ。

（1）液の見掛け密度を1g/cm³とし、蓋が開止状態のとき、蓋に加える最大荷重を求めよ。

（2）エアーシリンダのストローク及び必要内径を求めよ。
ただし、エアー圧力は0.5MPa、負荷率50%、開閉は90°とする。
シリンダ内径は下記標準径より選べ。
シリンダ内径（mm）60，80，100，120，140，160，180

（3）前問（1）、（2）の荷重がどのように支点ビンに加わるか、その合成荷重を求めよ。

（4）蓋を開いたときの流出口Q（m³/s）（水面は図の位置）を求めよ。

（5）蓋を開放したとき（水面は図の位置）衝突板が受ける力（kN）を求めよ。ただし、各種損失は無視する。
【4-4】下図に示すような連続運転の大形コンベヤチェーン（RFタイプ）の搬送設備がある。主な仕様を下図に示す。

運搬物	箱：400（長さ）×300（幅）×250（高さ）
運搬物 質量	20kg/個（最大）
チェーン2列とアタッチメント質量	4.5kg/m
受入能力	300箱/h
搬送速度	6m/min
電動機	220V 60Hz 4p
プレーキ付ギヤードモータ	
チェーンとレールの摩擦係数	0.12
駆動の機械効率	0.8

下記の設問（1）〜（5）に答えよ。
(1) 運転時、2列のコンベヤチェーンの張力を求めよ。
(2) ギヤードモータのモータ出力を求めよ。
(3) （1）項条件での、駆動チェーンの張力を求めよ。
(4) 運転時、A点の軸受に加わる、合成荷重を求めよ。
(5) 運転時、駆動軸のA点に加わる曲げモーメント及びねじりモーメントを求めよ。
【4-5】下図は工場の屋内に設置された、壁掛けクレーンである。
主な仕様を下記に示す。

定格荷重 (M1) 2t
フック質量 100kg
旋回部本体質量 (M2) 350kg
ドラム及び駆動部質量 (M3) 250kg
巻上げ速度 5m/min
揚程 2.5m
電源 220V 60Hz
荷重の割増し 衝撃係数、作業係数、滑車の動摩擦等 = つり荷重の10%とする。

下記の設問（1）～（5）に答えよ。
（1）ロープ張力を求めよ。
（2）ギャードモータのモータ出力を求めよ。

ただし、機械効率をη = 0.85とし、出力(kW)は次の中から選べ。
(0.4, 0.75, 1.5, 2.2, 3.7)
（3）ギャードモータの減速比を求めよ。ただしモータの極数は4pとする。
（4）部材①及び②に加わる荷重を求めよ。
（5）支持点④及び⑬に加わる水平力、垂直力を求めよ。